References

This page contains references to the literature and resources used in the development of HITEN.

Note

This page contains a comprehensive bibliography. Not all references are cited in the documentation text, but they represent the foundational literature for the methods implemented in HITEN.

Primary References

[Szebehely1967]

Szebehely, V. (1967). Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press.

[Koon2011]

Koon, W. S., Lo, M. W., Marsden, J. E., & Ross, S. D. (2011). Dynamical Systems, the Three-Body Problem and Space Mission Design. Springer.

[Gomez2001]

Gomez, G., Jorba, A., Masdemont, J., & Simo, C. (2001). Dynamics and Mission Design Near Libration Points. World Scientific.

[Farquhar1968]

Farquhar, R. W. (1968). The Control and Use of Libration-Point Satellites. NASA Technical Report TR R-346.

[Howell1984]

Howell, K. C. (1984). Three-Dimensional, Periodic, ‘Halo’ Orbits. Celestial Mechanics, 32(1), 53-71.

[Richardson1980]

Richardson, D. L. (1980). Analytic Construction of Periodic Orbits About the Collinear Points. Celestial Mechanics, 22(3), 241-253.

Mathematical Foundations

[Arnold1989]

Arnold, V. I. (1989). Mathematical Methods of Classical Mechanics. Springer.

[Goldstein2002]

Goldstein, H., Poole, C., & Safko, J. (2002). Classical Mechanics. Addison-Wesley.

[Marsden1999]

Marsden, J. E. & Ratiu, T. S. (1999). Introduction to Mechanics and Symmetry. Springer.

[Meyer2009]

Meyer, K. R., Hall, G. R., & Offin, D. (2009). Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. Springer.

Numerical Methods

[Hairer2006]

Hairer, E., Norsett, S. P., & Wanner, G. (2006). Solving Ordinary Differential Equations I: Nonstiff Problems. Springer.

[Hairer2002]

Hairer, E. & Wanner, G. (2002). Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer.

[Press2007]

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical Recipes: The Art of Scientific Computing. Cambridge University Press.

[Golub2013]

Golub, G. H. & Van Loan, C. F. (2013). Matrix Computations. Johns Hopkins University Press.

Bifurcation Theory

[Kuznetsov2004]

Kuznetsov, Y. A. (2004). Elements of Applied Bifurcation Theory. Springer.

[Guckenheimer1983]

Guckenheimer, J. & Holmes, P. (1983). Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer.

[Wiggins1990]

Wiggins, S. (1990). Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer.

Hamiltonian Systems

[Celletti2010]

Celletti, A. (2010). Stability and Chaos in Celestial Mechanics. Springer.

[Jorba2001]

Jorba, A. (2001). A Methodology for the Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems. Journal of Computational Physics, 169(2), 375-390.

Fourier Analysis

[Boyd2001]

Boyd, J. P. (2001). Chebyshev and Fourier Spectral Methods. Dover Publications.

[Trefethen2000]

Trefethen, L. N. (2000). Spectral Methods in MATLAB. SIAM.

[Canuto2006]

Canuto, C., Hussaini, M. Y., Quarteroni, A., & Zang, T. A. (2006). Spectral Methods: Fundamentals in Single Domains. Springer.

Software and Tools

[NumPy]

Harris, C. R., Millman, K. J., van der Walt, S. J., et al. (2020). Array programming with NumPy. Nature, 585(7825), 357-362.

[SciPy]

Virtanen, P., Gommers, R., Oliphant, T. E., et al. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261-272.

[Matplotlib]

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90-95.

[SymPy]

Meurer, A., Smith, C. P., Paprocki, M., et al. (2017). SymPy: symbolic computing in Python. PeerJ Computer Science, 3, e103.

[Numba]

Lam, S. K., Pitrou, A., & Seibert, S. (2015). Numba: A LLVM-based Python JIT compiler. Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC.

Online Resources

[NASA]

NASA Goddard Space Flight Center. Libration Points. https://ssd-api.jpl.nasa.gov/doc/libration_points.html

[JPL]

Jet Propulsion Laboratory. Solar System Dynamics. https://ssd-api.jpl.nasa.gov/

[IAU]

International Astronomical Union. IAU 2009 System of Astronomical Constants. https://www.iau.org/static/resolutions/IAU2009_English.pdf

[SPICE]

NASA Navigation and Ancillary Information Facility. SPICE Toolkit. https://naif.jpl.nasa.gov/naif/toolkit.html

Additional Reading

[Bate1971]

Bate, R. R., Mueller, D. D., & White, J. E. (1971). Fundamentals of Astrodynamics. Dover Publications.

[Curtis2014]

Curtis, H. D. (2014). Orbital Mechanics for Engineering Students. Butterworth-Heinemann.

[Vallado2013]

Vallado, D. A. (2013). Fundamentals of Astrodynamics and Applications. Microcosm Press.

[Schaub2012]

Schaub, H. & Junkins, J. L. (2012). Analytical Mechanics of Space Systems. AIAA Education Series.

[Battin1999]

Battin, R. H. (1999). An Introduction to the Mathematics and Methods of Astrodynamics. AIAA Education Series.